The cells of hematopoietic and vascular endothelial cell lineages are believed to share a common precursor, termed hemangioblast. However, the existence of a growth factor acting relatively specifically on hemangioblasts remains unclear. Here we report the identification of hemangiopoietin (HAPO), a novel growth factor acting on both hematopoietic and endothelial cell lineages. In vitro in the human system, recombinant human HAPO (rhHAPO) significantly stimulated the proliferation and hematopoietic and/or endothelial differentiation of human bone marrow mononuclear cells and of purified CD34+, CD133+, kinase domain receptor-positive (KDR+), or CD34+/KDR+ cell populations. In the murine system, rhHAPO stimulated the proliferation of long-term culture-initiating cells (LTC-ICs) as well as CD34+ and stem cell antigen-1 (Sca-1+) cell subsets. In vivo, subcutaneous injection of rhHAPO into normal mice resulted in a significant increase in bone marrow hematopoietic cells. Furthermore, irradiated mice injected with rhHAPO had an enhanced survival rate and accelerated hematopoiesis. Our data suggest that HAPO is a novel growth factor acting on the primitive cells of both hematopoietic and endothelial cell lineages and that HAPO may have a clinical potential in the treatment of various cytopenias and radiation injury and in the expansion of hematopoietic and endothelial stem/progenitor cells.