Caveolae are a subset of lipid rafts enriched in glycosphingolipids and cholesterol-rich domains, but selectively lacking glycosylphosphatidyl inositol-anchored proteins (GPI-APs). Caveolin proteins are the organizing component of caveolae, but the corresponding proteins for other classes of lipid rafts are poorly defined. Epithelial membrane protein-2 (EMP2), a member of the four-transmembrane superfamily, facilitates plasma membrane delivery of certain integrins. In this study, we found by laser confocal microscopy that EMP2 was associated with GPI-APs (detected by the GPI-AP binding bacterial toxin proaerolysin). Biochemical membrane fractionation and methyl-beta-cyclodextrin treatment demonstrated that this association occurred within lipid rafts. EMP2 did not associate with caveolin-bearing membrane structures, and recombinant overexpression of EMP2 in NIH3T3 cells decreased caveolin-1 and caveolin-2 protein levels while increasing the surface expression of GPI-APs. Conversely, a ribozyme construct that specifically cleaves the EMP2 transcript reduced surface GPI-APs and increased caveolin protein expression. These findings suggest that EMP2 facilitates the formation and surface trafficking of lipid rafts bearing GPI-APs, and reduces caveolin expression, resulting in impaired formation of caveolae.