Enhanced expression of interferon-inducible protein 10 associated with Th1 profiles of chemokine receptor in autoimmune pulmonary inflammation of MRL/lpr mice

Arthritis Res Ther. 2004;6(1):R78-R86. doi: 10.1186/ar1029. Epub 2003 Nov 19.

Abstract

MRL/Mp-lpr/lpr (MRL/lpr) mice spontaneously develop systemic lupus erythematosus (SLE)-like disease. The natural history of the pulmonary involvement and the underlying mechanism of leukocyte infiltration into the lungs of MRL/lpr mice and SLE patients remains elusive. We aimed to investigate the expression profiles of chemokines and chemokine receptors in the lung of the SLE-prone mouse. We examined the correlation between lung inflammation and expression of IP-10 (interferon-gamma-inducible protein 10), a CXC chemokine, and TARC (thymus- and activation-regulated chemokine), a CC chemokine, in MRL/lpr mice, MRL/Mp-+/+ (MRL/+) mice, and C57BL/6 (B6) control mice. The extent of cell infiltration in the lung was assessed histopathologically. Reverse transcriptase PCR showed up-regulation of IP-10 mRNA expression in the lungs (P < 0.05) of MRL/lpr mice, in comparison with MRL/+ or B6 mice. The increase paralleled increased expression of a specific IP-10 receptor, CXCR3, and correlated with the degree of infiltration of mononuclear lymphocytes. In contrast, lung expression of TARC and its specific receptor, CCR4, were suppressed in MRL/lpr mice. Immunohistology showed that macrophage-like cells were the likely source of IP-10. Flow cytometric analyses revealed that the CXCR3-expressing cells were mainly infiltrating CD4 T cells and macrophages, which correlated with the degree of mononuclear lymphocyte infiltration. Recent data suggest that Th1 cells and Th1-derived cytokines play an important role in the development of SLE-like disease in MRL/lpr mice. Our results suggest that IP-10 expression in the lung is involved, through CXCR3, in the pathogenesis of pulmonary inflammation associated with migration of Th1 cells.