A chromosome painting test of the basal eutherian karyotype

Chromosome Res. 2004;12(1):45-53. doi: 10.1023/b:chro.0000009294.18760.e4.

Abstract

We studied the chromosomes of an Afrotherian species, the short-eared elephant shrew Macroscelides proboscideus with traditional banding techniques and mapped the homology to human chromosomes by in-situ hybridization of human chromosome paints. Here we present for the first time the karyotype of this species, including banding patterns. The chromosome painting allowed us to test various hypotheses of the ancestral Eutherian karyotype, the validity of the radical taxonomic assemblage known as Afrotheria and the phylogenetic position of the elephant shrew within the Afrotheria. Current hypotheses concerning the Eutherian ancestral karyotype include diploid numbers ranging from 2n = 44 to 50 while molecular studies have proposed a new superordinal grouping of extant Eutherians. In particular, the Afrotheria is hotly debated, as it appears to be an odd mixture of species from Ungulata, Tubulidentata, Macroscelidea and Lipotyphla, which have no apparent morphological traits to unite them. The hybridization pattern delimited a total of 37 segments in the elephant shrew genome and revealed 21 different associations of human chromosome segments. Associations 1/19 and 5/21 link all Afrotheria so far studied and support the Afrotheria assemblage. Associations 2/8, 3/20, and 10/17 strongly link aardvarks and elephant shrews after the divergence of the line leading to elephants. The most likely ancestral Eutherian karyotype would be 2n = 48 chromosomes. However, the lack of comparative chromosome painting data between Eutherians and an appropriate outgroup is a severe limitation on attempts to delineate the ancestral genome of Eutherians. Current attempts lack legitimacy until this situation is corrected.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Cell Line
  • Chromosome Banding
  • Chromosome Painting / methods*
  • Elephants / classification
  • Elephants / genetics*
  • Genome
  • Humans
  • Karyotyping
  • Synteny