Nontypeable Haemophilus influenzae (NTHi) is an important human pathogen causing otitis media in children and exacerbation of chronic obstructive pulmonary disease in adults. Like most other bacterial infections, NTHi infections are also characterized by inflammation, which is mainly mediated by cytokines and chemokines such as tumor necrosis factor alpha (TNF-alpha). Among a variety of transcription regulators, NF-kappaB has been shown to play a critical role in regulating the expression of large numbers of genes encoding inflammatory mediators. In review of the current studies on NF-kappaB regulation, most of them have focused on investigating how NF-kappaB is activated by a single inducer at a time. However, in bacteria-induced inflammation in vivo, multiple inducers including both exogenous and endogenous mediators are present simultaneously. A key issue that has yet to be addressed is whether the exogenous inducers such as NTHi and the endogenous factors such as TNF-alpha activate NF-kappaB in a synergistic manner. We show that NTHi and TNF-alpha, when present together, synergistically induce NF-kappaB activation via two distinct signaling pathways: NF-kappaB translocation-dependent and -independent pathways. The NF-kappaB translocation-dependent pathway involves NF-kappaB-inducing kinase-IkappaB kinase beta/gamma-dependent phosphorylation and degradation of IkappaBalpha, whereas the NF-kappaB translocation-independent pathway involves mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase kinase kinase 1-dependent activation of MAPK kinase 3/6-p38 MAPK pathway. In addition, the same signaling pathways are also involved in synergistic induction of TNF-alpha, IL-1beta, and IL-8. These studies should deepen our understanding of the molecular mechanisms underlying the combinatorial regulation of inflammation and lead to development of therapeutic strategies for NTHi-induced infections.