The effect of hypotonic shock on cultured pavement gill cells from freshwater (FW)- and seawater (SW)-adapted trout was investigated. Exposure to 2/3rd strength Ringer solution produced an increase in cell volume followed by a slow regulatory volume decrease (RVD). The hypotonic challenge also induced a biphasic increase in cytosolic Ca(2+) with an initial peak followed by a sustained plateau. Absence of external Ca(2+) did not modify cell volume under isotonic conditions, but inhibited RVD after hypotonic shock. [Ca(2+)](i) response to hypotonicity was also partially inhibited in Ca-free bathing solutions. Similar results were obtained whether using cultured gill cells prepared from FW or SW fishes. When comparing freshly isolated cells with cultured gill cells, a similar Ca(2+) signalling response to hypotonic shock was observed regardless of the presence or absence of Ca(2+) in the solution. In conclusion, gill pavement cells in primary culture are able to regulate cell volume after a cell swelling and express a RVD response associated with an intracellular calcium increase. A similar response to a hypotonic shock was recorded for cultured gill cells collected from FW and SW trout. Finally, we showed that calcium responses were physiologically relevant as comparable results were observed with freshly isolated cells exposed to hypoosmotic shock.