Structures and spectroscopic observables of the paramagnetic intermediates of the enzymatic reaction cycle of the metalloenzyme [NiFe] hydrogenase were calculated using relativistic density functional theory (DFT) within the zero-order regular approximation (ZORA). By comparing experimental and calculated magnetic resonance parameters (g- and hyperfine tensors) for the states Ni-A, Ni-B, Ni-C, Ni-L, and Ni-CO the details of the atomic composition of these paramagnetic intermediates could be elucidated that are mostly not available from X-ray structure analysis. In general, good agreement between calculated and experimental observables could be obtained. A detailed picture of the changes of the active center during the catalytic cycle was deduced from the obtained structures. Based on these results, a consistent model for the sequence of redox states including protonation steps is proposed which is important for understanding the mechanism of the [NiFe] hydrogenase.