We recently reported that several Gs-coupled receptors stimulate phospholipase C (PLC)-epsilon via increased formation of cyclic AMP and subsequent activation of the small GTPase Rap2B by the cyclic AMP-activated exchange factor Epac1. Here we show by studies in HEK-293 and N1E-115 neuroblastoma cells that this stimulation induced by Gs-coupled receptors or the direct adenylyl cyclase activator, forskolin, is potently inhibited by Gi-coupled receptors, known to inhibit cyclic AMP formation. PLC inhibition by the overexpressed M2 muscarinic receptor and the endogenously expressed sphingosine-1-phosphate and delta-opioid receptors was fully pertussis toxin-sensitive and accompanied by a reduction in Rap2B activation induced by Gs-coupled receptors. In contrast, Rap2B activation and PLC stimulation induced by membrane-permeable cyclic AMP analogues, including an Epac-specific activator, or PLC stimulation caused by constitutively active Rap2B were not affected by the Gi-coupled receptors. In summary, our data indicate that Gi-coupled receptors can inhibit PLC-epsilon, most likely by suppressing formation of cyclic AMP required for Epac-mediated Rap2B activation.