High-frequency stimulation (HFS) of the internal pallidum (GPi) has been reported to improve generalized dystonia in patients. Currently, dystonia is thought to be associated with disturbed neuronal activity of GPi neurons. Similar findings have been observed in the dtsz hamster, a model of idiopathic paroxysmal non-kinesiogenic dystonia. For this reason, we investigated the effect of bilateral HFS of the entopeduncular nucleus (EPN, rodent homologue of GPi) on the severity of dystonia. Bilateral EPN-HFS resulted in a reversible decrease of dystonia severity up to 50% when compared to both pre- and post-HFS scores, and controls. Our results underline the pathophysiological role of the EPN in the dtsz hamster and suggest the suitability of this model to further investigate mechanisms of HFS in dystonia.