The use of high-resolution magnetic resonance imaging for monitoring interbody fusion and bioabsorbable cages: an ex vivo pilot study

Neurosurg Focus. 2004 Mar 15;16(3):E3. doi: 10.3171/foc.2004.16.3.4.

Abstract

Object: Interbody fusion is a gradual process of graft resorption and tissue formation, ideally resulting in a bone bridge between two adjacent vertebral bodies. Initially, fibrous tissue and cartilage are formed, which subsequently are replaced by bone through the process of endochondral ossification. When cages and/or their contents are made of resorbable polymers like lactic or glycolic acids, there is a simultaneous process of implant degradation, which is eventually accompanied by reactions in the surrounding tissues. The purpose of this study was to explore the use of highresolution magnetic resonance (MR) imaging for monitoring tissue differentiation, spinal fusion, cage degradation, and eventually tissue reactions as a function of time.

Methods: Lumbar vertebral segments obtained in 14 goats with 3, 6, and 12 months of follow up (three, four, and seven animals, respectively) were available from a study of the feasibility of poly(L,D-lactic acid) cages for spinal fusion. Plain x-ray films, MR images, and histological sections were used to evaluate spinal fusion and cage resorption. The first follow-up tests revealed that MR imaging noninvasively provided three-dimensional information on cage placement, cage degradation and bone formation, and that it has potential to differentiate between the various soft tissues.

Conclusions: Although the magnetic field strength and thus the resolution used were higher than normal in clinical practice, MR imaging appears to be a promising modality for the noninvasive clinical follow up of patients who undergo fusion with resorbable cages. Tissue reactions were not encountered in this study, and thus could not be evaluated.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorbable Implants*
  • Animals
  • Female
  • Goats
  • Image Enhancement / methods*
  • Intervertebral Disc / pathology
  • Intervertebral Disc / surgery
  • Lumbar Vertebrae / pathology*
  • Lumbar Vertebrae / surgery*
  • Magnetic Resonance Imaging / methods*
  • Pilot Projects
  • Polyesters
  • Spinal Fusion / methods*

Substances

  • Polyesters
  • poly(lactide)