The osmoprotectant Pro betaine is the main betaine identified in alfalfa (Medicago sativa). We have investigated the long-term responses of nodulated alfalfa plants to salt stress, with a particular interest for Pro betaine accumulation, compartmentalization, and metabolism. Exposure of 3-week-old nodulated alfalfa plants to 0.2 m NaCl for 4 weeks was followed by a 10-, 4-, and 8-fold increase in Pro betaine in shoots, roots, and nodules, respectively. Isotope-labeling studies in alfalfa shoots indicate that [14C]Pro betaine was synthesized from l-[14C]Pro. [14C]Pro betaine was efficiently catabolized through sequential demethylations via N-methylPro and Pro. Salt stress had a minor effect on Pro betaine biosynthesis, whereas it strongly reduced Pro betaine turnover. Analysis of Pro betaine and Pro compartmentalization within nodules revealed that 4 weeks of salinization of the host plants induced a strong increase in cytosol and bacteroids. The estimated Pro betaine and Pro concentrations in salt-stressed bacteroids reached 7.4 and 11.8 mm, respectively, compared to only 0.8 mm in control bacteroids. Na+ content in nodule compartments was also enhanced under salinization, leading to a concentration of 14.7 mm in bacteroids. [14C]Pro betaine and [14C]Pro were taken up by purified symbiosomes and free bacteroids. There was no indication of saturable carrier(s), and the rate of uptake was moderately enhanced by salinization. Ultrastructural analysis showed a large peribacteroid space in salt-stressed nodules, suggesting an increased turgor pressure inside the symbiosomes, which might partially be due to an elevated concentration in Pro, Pro betaine, and Na+ in this compartment.