The incidence of cytogenetic abnormalities in childhood de novo acute myeloid leukaemia (AML) and its prognostic significance was assessed in an Israeli paediatric referral centre. Cytogenetic analysis was successful in 86 of 97 children (< 20 years of age) diagnosed between 1988 and 2002 with de novo AML. Fluorescence in situ hybridization analysis detected new information in 11 of them, leading to reassignment in cytogenetic group classification. The incidence of the various cytogenetic subgroups was as follows: normal - 9%; t(11q23) - 22%; t(8;21) - 13%; t(15;17) - 8%; inv(16) - 3.4%; abn(3q) - 4.6%; 7/7q-(sole or main) - 5.8%; del(9q)(sole) and +21(sole) - 4.6% each; t(8;16) - 2.3%; t(6;9), t(1;22), +8(sole) - 1.1% each; and miscellaneous - 18%. The overall survival (OS) and event-free survival (EFS) (4 years) for 94 patients treated with the modified Berlin-Frankfürt-Münster (BFM) AML protocols (non-irradiated) were 59.9% (SE = 5%) and 55.7% (SE = 5%), respectively, and for the favourable t(8;21), t(15;17) and inv(16), OS was 60% (SE = 15%), 83% (SE = 15%) and 100% respectively. For the normal group it was 62% (SE = 17%), miscellaneous 64% (SE = 12%), t(11q23) 44.6% (SE = 11%) and of the -7/7q-, del(9q)(sole) or t(6;9), none had survived at 4 years. The incidence of cytogenetic subgroups in the Israeli childhood AML population and their outcome were similar to other recently reported paediatric series. Cytogenetic abnormalities still carry clinical relevance for treatment stratification in the context of modern chemotherapy.
Copyright 2004 Blackwell Publishing Ltd