We previously reported that HMJ-38 was the most potent 2-phenyl-4-quinozolinone derivative in inhibiting tubulin polymerization and showed significant cytotoxicity against several human tumor cell lines. In this work, we studied its cytotoxic effect on HL-60 leukemia cells and the underlying mechanisms. We first investigated the effects of HMJ-38 on viability, cell cycle and induction of apoptosis in HL-60 and normal human peripheral blood mononuclear cells (PBMC). After 24-hour treatment with HMJ-38, a dose- and time-dependent decrease in the viability of HL-60 cells was observed and the approximate IC50 was 4.48 microM. The cytotoxic effect of HMJ-38 on PBMC was less significant than that on HL-60 cells, either with 24 or 48 hours of treatment. Cell cycle analysis showed that HMJ-38 induced significant G2/M arrest and apoptosis in HL-60 cells. The HMJ-38-induced G2/M arrest occurred before the onset of apoptosis. Within 24 hours of treatment, HMJ-38 influenced the CDK/cyclin B activity by increasing Chk1, Wee1 and p21 and decreasing Cdc25C protein levels. The HMJ-38-induced apoptosis was further confirmed by morphological assessment and DNA fragmentation assay. Induction of apoptosis in HMJ-38-treated HL-60 cells was accompanied by an apparent increase of cytosolic cytochrome c, down-regulation of Bcl-2, up-regulation of Bax and cleavage of pro-caspase-9, -3 and poly(ADP)ribosylpolymerase (PARP). The results of the significant reduction of caspase activities and apoptosis by caspase inhibitors indicated that the HMJ-38-induced apoptosis was mainly mediated by activation of caspases-9 and -3. HMJ-38 also activated ERK in HL-60 cells. Pre-incubating cells with ERK inhibitors (U0126 and PD98059) attenuated the HMJ-38-induced ERK activation and apoptosis. Nevertheless, cells remained arrested in G2/M. These results suggest that HMJ-38 is a potent anticancer drug and it shows a remarkable action on cell cycle before commitment for apoptosis is reached.