There is growing evidence that the two small leucine-rich proteoglycans biglycan and decorin regulate the assembly of connective tissues and alter cell behavior during development and pathological processes. In this study, we have used an experimental animal model of unilateral ureteral ligation and mice deficient in either biglycan or decorin. We discovered that pressure-induced injury to the wild-type kidneys led to overexpression of decorin, biglycan, fibrillin-1, and fibrillin-2. In contrast, in biglycan-deficient kidneys the overexpression of fibrillin-1 was markedly attenuated and this was associated with cystic dilatation of Bowman's capsule and proximal tubules. Notably, we found that in ligated kidneys from decorin-null mice, fibrillin-1 expression was initially enhanced to the same extent as in wild-type animals. However, long-term obstruction resulted in down-regulation of fibrillin-1 and concurrent cystic dilatation of Bowman's capsule in 33% of kidneys at 5 months after obstruction. In all of the genotypes, no differences in fibrillin-2 expression were observed. These in vivo data correlated with a significant induction of fibrillin-1 expression in renal fibroblasts and mesangial cells by recombinant biglycan and decorin. Our results indicate a novel role for decorin and biglycan during pressure-induced renal injury by stimulating fibrillin-1 expression.