Plasmacytoid dendritic cell (PDC) leukemia/lymphoma is a rare neoplasm presenting cutaneous lesions at the time of diagnosis, followed by dissemination to bone marrow, lymph nodes, and other lymphoid and nonlymphoid organs. Since these leukemic counterparts of human PDC are similar to normal PDC, we studied their chemokine receptor equipment and their migratory capacities. We found both in skin lesions and in invaded lymph nodes an expression by tumor cells of CXCR3, CXCR4, and CCR7, and the concomitant expression by cells in the microenvironment of their respective ligands CXCL9, CXCL12, and CCL19. Moreover, flow cytometry phenotype of leukemic PDC (LPDC) revealed an unexpected expression of CCR6. We show that fresh tumor cells are able to migrate in response to CXCR4, CCR2, CCR5, CCR6, and CCR7 ligands, and the ability of CXCR3 ligands to increase the responsiveness to CXCL12. IL-3- or virus-induced activation of LPDC leads to downregulation of CXCR3 and CXCR4, and upregulation of CCR7, associated with the loss of response to CXCL12, and the acquisition of sensitivity to CCL19. Altogether, these results suggest that the preferential accumulation of LPDC in the skin or lymph nodes could be orchestrated by CXCR3, CXCR4, CCR6, and CCR7 ligands, found in nontumoral structures of invaded organs.