EFF-1 is sufficient to initiate and execute tissue-specific cell fusion in C. elegans

Curr Biol. 2004 Sep 7;14(17):1587-91. doi: 10.1016/j.cub.2004.07.059.

Abstract

Despite the identification of essential processes in which cell fusion plays spectacular roles such as in fertilization and development of muscle, bone, and placenta, there are no identified proteins that directly mediate developmental cell fusion reactions. C. elegans has recently become among the best-characterized models to use for studying developmental cell fusion. The eff-1 (epithelial fusion failure) gene encodes novel type I membrane proteins required for epithelial cell fusion. Analysis of eff-1 mutants showed that cell fusion normally restricts routes for cell migration and establishes body and organ shape and size [ 5, 8, 9, 11]. Here, we explored cell fusion by using time-lapse confocal and electron microscopy of different organs. We found that ectopic expression of eff-1 is sufficient to fuse epithelial cells that do not normally fuse. This ectopic fusion results in cytoplasmic content mixing and disappearance of apical junctions, starting less than 50 min after the start of eff-1 transcription. We found that eff-1 is necessary to initiate and expand multiple microfusion events between pharyngeal muscle cells. Surprisingly, eff-1 is not required to fuse the gonadal anchor cell to uterine cells. Thus, eff-1 is sufficient and essential for most but not all cell fusion events during C. elegans development.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Caenorhabditis elegans / embryology*
  • Caenorhabditis elegans / growth & development*
  • Caenorhabditis elegans / metabolism
  • Caenorhabditis elegans Proteins / metabolism*
  • Cell Fusion
  • Epithelium / metabolism
  • Epithelium / ultrastructure
  • Fluorescence
  • Gene Expression Regulation, Developmental / physiology*
  • Membrane Glycoproteins / metabolism*
  • Microscopy, Confocal
  • Microscopy, Electron
  • Muscle Cells / metabolism
  • Muscle Cells / ultrastructure

Substances

  • Caenorhabditis elegans Proteins
  • EFF-1 protein, C elegans
  • Membrane Glycoproteins