The study of the metabolomics of primary metabolites using conventional chemical analyses requires a high-throughput method. Chemical derivatizations are a prerequisite for gas-chromatographic separation, and a large sample quantity is needed for liquid-chromatographic separation and nuclear magnetic resonance detection systems. Recently, we have developed a capillary electrophoresis-mass spectrometry (CE-MS) technology that can simultaneously quantify a large number of primary metabolites, using only a small quantity of samples, and without any chemical derivatizations. Parallel use of a capillary electrophoresis-diode array detector (CE-DAD) system further enables almost all water-soluble intracellular metabolites to be analyzed. We demonstrate, with rice leaves, a simple and rapid method of sample preparation for CE analysis; using this method, we have successfully measured the levels of 88 main metabolites involved in glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, photorespiration, and amino acid biosynthesis.