Objective: In mechanically ventilated patients inspiratory increase in pleural pressure during lung inflation may produce complete or partial collapse of the superior vena cava. Occurrence of this collapse suggests that at this time external pressure exerted by the thoracic cavity on the superior vena cava is greater than the venous pressure required to maintain the vessel fully open. We tested the hypothesis that measurement of superior vena caval collapsibility would reveal the need for volume expansion in a given septic patient.
Design and setting: Prospective data collection for 66 successive patients in septic shock admitted in a medical intensive care unit and mechanically ventilated for an associated acute lung injury.
Measurements and results: We simultaneously measured superior vena caval collapsibility by echocardiography and cardiac index by the Doppler technique at baseline and after a 10 ml/kg volume expansion by 6% hydroxyethyl starch in 30 min. The threshold superior vena caval collapsibility of 36%, calculated as (maximum diameter on expiration-minimum diameter on inspiration)/maximum diameter on expiration, allowed discrimination between responders (defined by an increase in cardiac index of at least 11% induced by volume expansion) and nonresponders, with a sensitivity of 90% and a specificity of 100%.
Conclusions: Superior vena cava measurement should be systematically performed during routine echocardiography in septic shock as it gives an accurate index of fluid responsiveness.