We examined the effect of wild-type human adenovirus (Ad5) on choline transport in murine lung epithelia (MLE) and in rodent primary alveolar type II cells. Cells were active in pH-sensitive, reversible transport of choline, a process blocked pharmacologically with phenoxybenzamine, an inhibitor of organic cation transporters (OCT). PCR products for the choline transporters, OCT-1 and OCT-2, were detected, but only OCT-2 protein was robustly expressed within MLE and primary alveolar epithelial cells. Ad5 produced a two- to threefold increase in choline efflux from cells, resulting in a significant reduction in intracellular choline content and its major product, phosphatidylcholine. Effects of Ad5 on choline efflux were inhibited with phenoxybenzamine, and choline efflux was attenuated by OCT-2 small interfering RNA. Adenovirus also produced a dose-dependent increase in immunoreactive OCT-2 levels concomitant with increased cellular OCT-2 steady-state mRNA. These results indicate that adenoviruses can significantly disrupt choline trafficking in lung epithelia by upregulating expression of an alveolar protein involved in organic cation transport.