A microfluidic flow injection (microFIA) system was employed for handling and monitoring of cell-released products from living cells immobilised on silicon microchips. The dynamic release of glucose and ethanol produced from sucrose by immobilised Saccharomyces cerevisiae cells was determined using microchip biosensors (micro-biosensors) with either co-immobilised glucose oxidase-horseradish peroxidase (GOX-HRP), or alcohol oxidase-horseradish peroxidase (AOX-HRP), catalysing a series of reactions ending up with chemiluminescence (CL) generated from HRP-catalysed oxidation of luminol in presence of p-iodophenol (PIP). The yeast cells were attached by first treating them with polyethylenimine (PEI) followed by adsorption to the microchip surface. The cell loss during assaying was evaluated qualitatively using scanning electron microscopy (SEM), showing that no cells were lost after 35 min liquid handling of the cell chip at 10 microl min(-1). The enzymes were immobilised on microchips via PEI-treatment followed by glutaraldehyde (GA) activation. The GOX-HRP micro-biosensors could be used during five days without any noticeable decrease in response, while the AOX-HRP micro-biosensors showed continuously decreasing activity, but could still be used employing calibration correction. The glucose and ethanol released from the immobilised yeast chips were quantitatively monitored, by varying the incubation time with sucrose, showing the possibilities and advantages of using a microfluidic system set-up for cell-based assays.