Objective: High-density lipoprotein (HDL)-associated antioxidant paraoxonase (PON) may reduce low-density lipoprotein (LDL) oxidation and prevent atherosclerosis. The aim of this present study was to investigate the effect of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor atorvastatin on hydrogen-peroxide-induced DNA damage by comet assay and the correlation between oxidative DNA damage and antioxidant PON activity.
Methods: Thirteen type-II/a hyperlipidemic patients were enrolled in the study. We examined the effect of 10 mg/day atorvastatin treatment on lipid levels and the degree of DNA damage in lymphocytes separated from hyperlipidemic patients, nitric oxide (NO), thiobarbituric acid-reactive substances (TBARS), PON levels and activity.
Results: After 6 months, atorvastatin treatment significantly decreased serum cholesterol and LDL-cholesterol levels. The triglyceride level did not change, and there was no significant change in the HDL cholesterol level. The visual score characteristic to the degree of DNA damage in comet assay was significantly decreased, as well as the TBARS level, while the level of NO was non-significantly increased. PON activity and the PON/HDL ratio were significantly increased after atorvastatin treatment. There was a negative correlation between DNA damage and PON activity, as well as between DNA damage and the PON/HDL ratio before and after atorvastatin treatment.
Conclusion: These findings show that atorvastatin treatment favorably affected the lipid profile, increasing the activity of HDL-associated PON and decreasing the cytotoxic effect of oxidative stress.