Objectives: A new, pharmacokinetically enhanced, oral formulation of amoxicillin/clavulanic acid has been developed to overcome resistance in the major bacterial respiratory pathogen Streptococcus pneumoniae, while maintaining excellent activity against Haemophilus influenzae and Moraxella catarrhalis, including beta-lactamase producing strains. This study was conducted to provide in vitro susceptibility data for amoxicillin/clavulanic acid and 16 comparator agents against the key respiratory tract pathogens.
Methods: Susceptibility testing was performed on 9172 isolates collected from 95 centers in North America, Europe, Australia, and Hong Kong by broth microdilution MIC determination, according to NCCLS methods, using amoxicillin/clavulanic acid and 16 comparator antimicrobial agents. Results were interpreted according to NCCLS breakpoints and pharmacokinetic/pharmacodynamic (PK/PD) breakpoints based on oral dosing regimens.
Results: Overall, 93.5% of Streptococcus pneumoniae isolates were susceptible to amoxicillin/clavulanic acid at the current susceptible breakpoint of < or =2 microg/mL and 97.3% at the PK/PD susceptible breakpoint of < or =4 microg/mL for the extended release formulation. Proportions of isolates that were penicillin intermediate and resistant were 13% and 16.5%, respectively, while 25% were macrolide resistant and 21.8% trimethoprim/sulfamethoxazole resistant. 21.9% of Haemophilus influenzae were beta-lactamase producers and 16.8% trimethoprim/sulfamethoxazole resistant, >99% of isolates were susceptible to amoxicillin/clavulanic acid, cefixime, ciprofloxacin and levofloxacin at NCCLS breakpoints. The most active agents against Moraxella catarrhalis were amoxicillin/clavulanic acid, macrolides, cefixime, fluoroquinolones, and doxycycline. Overall, 13% of Streptococcus pyogenes were resistant to macrolides.
Conclusion: The extended release formulation of amoxicillin/clavulanic acid has potential for empiric use against many respiratory tract infections worldwide due to its activity against species resistant to many agents currently in use.