Plasma membrane gamma-glutamyltransferase activity facilitates the uptake of vitamin C in melanoma cells

Free Radic Biol Med. 2004 Dec 1;37(11):1906-15. doi: 10.1016/j.freeradbiomed.2004.08.015.

Abstract

Adequate cellular transport of ascorbic acid (AA) and its oxidation product dehydroascorbate (DHA) is assured through specific carriers. It was shown that vitamin C is taken up as DHA by most cell types, including cancer cells, via the facilitative GLUT transporters. Thus, AA oxidation to DHA can be considered a mechanism favoring vitamin C uptake and intracellular accumulation. We have investigated whether such an AA-oxidizing action might be provided by plasma membrane gamma-glutamyltransferase (GGT), previously shown to function as an autocrine source of prooxidants. The process was studied using two distinct human metastatic melanoma clones. It was observed that the Me665/2/60 clone, expressing high levels of membrane GGT activity, was capable of effecting the oxidation of extracellular AA, accompanied by a marked increase of intracellular AA levels. The phenomenon was not observed with Me665/2/21 cells, possessing only traces of membrane GGT. On the other hand, AA oxidation and stimulation of cellular uptake were indeed observed after transfection of 2/21 cells with cDNA coding for GGT. The mechanism of GGT-mediated AA oxidation was investigated in acellular systems, including GGT and its substrate glutathione. The process was observed in the presence of redox-active chelated iron(II) and of transferrin or ferritin, i.e., two physiological iron sources. Thus, membrane GGT activity-often expressed at high levels in human malignancies-can oxidize extracellular AA and promote its uptake efficiently.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ascorbic Acid / analysis
  • Ascorbic Acid / metabolism*
  • Biological Transport / physiology
  • Cell Line, Tumor
  • Cell Membrane / enzymology*
  • Cell Membrane / physiology
  • Glutathione / metabolism
  • Humans
  • Iron Chelating Agents / pharmacology
  • Melanoma / enzymology*
  • Melanoma / genetics
  • Melanoma / metabolism
  • Oxidation-Reduction / drug effects
  • Skin Neoplasms / enzymology*
  • Skin Neoplasms / genetics
  • Skin Neoplasms / metabolism
  • Transfection
  • Transferrin / pharmacology
  • Transferrin / physiology
  • gamma-Glutamyltransferase / antagonists & inhibitors
  • gamma-Glutamyltransferase / genetics
  • gamma-Glutamyltransferase / metabolism*

Substances

  • Iron Chelating Agents
  • Transferrin
  • gamma-Glutamyltransferase
  • Glutathione
  • Ascorbic Acid