Because the ability of the mycotoxin patulin (PAT) to cause gene mutations in mammalian cells is still ambiguous, we have studied the mutagenicity of PAT at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene locus in cultured Chinese hamster V79 cells with normal, depleted, and elevated glutathione (GSH) levels. PAT was more toxic to GSH-depleted cells than to normal cells and caused an increase of the intracellular GSH level in normal and GSH-depleted cells. It also caused synchronization of the cell cycle due to a temporary accumulation of cells in the G2/M phase; this G2/M arrest was more persistent in GSH-depleted than in normal cells. PAT gave rise to a clear and concentration-dependent induction of HPRT mutations at non-cytotoxic concentrations in V79 cells with normal GSH level; the lowest PAT concentration causing a significant number of mutant cells was 0.3 micromolar, and the mutagenic potency of PAT equaled that of the established mutagen 4-nitroquinoline-N-oxide. The mutagenicity of PAT was again more pronounced, by a factor of about three, in GSH-depleted V79 cells. Elevated GSH levels abolished all observed effects of PAT. These data support the notion that PAT is a mutagenic mycotoxin, in particular in cells with low GSH concentration. The ability of PAT to cause gene mutations in mammalian cells might have a bearing on its carcinogenicity.