A series of permuted variants of antigenomic HDV ribozyme and trans-acting variants were constructed. The catalytic activity study of the ribozymes has shown that all the variants were capable of self-cleaving with equally biphasic kinetics. Ribonuclease and Fe(II)-EDTA cleavage have provided evidence that all designed ribozymes fold according to the pseudoknot model and the conformations of the initial and cleaved ribozyme are different. A scheme of HDV ribozyme self-cleavage reaction was suggested. The role of hydrogen bonds in the reaction was evaluated by substitution of ribose in the ribozyme for deoxyribose. It was found that the 2'-OH group of U23 and C27 is critical for the reaction to occur; the 2'-OH group of U32 and U39 is important, while 2'-OH groups of other nucleotides of loop 3, stem 4 and stem 1 are unimportant for the cleavage activity.