A sequence tagged site (STS)-based approach has been used to construct a 2.6-Mb contig in yeast artificial chromosomes (YACs) spanning the human dystrophin gene. Twenty-seven STSs were used to identify and overlap 34 YAC clones. A DNA fingerprint of each clone produced by direct Alu-PCR amplification of YAC colonies and the isolation of YAC insert ends by vectorette PCR were used to detect overlaps in intron 1 (280 kb) where no DNA sequence data were available, thereby achieving closure of the map. This study has evaluated methods for mapping large regions of the X chromosome and provides a valuable resource of the dystrophin gene in cloned form for detailed analysis of gene structure and function in the future.