Blockade of retinal waves prevents the segregation of retinogeniculate afferents into eye-specific layers in the visual thalamus. However, the key features of retinal waves that drive this refinement are controversial. Some manipulations of retinal waves lead to normal eye-specific segregation but others do not. By comparing retinal spiking patterns in several mutant mice with differing levels of eye-specific segregation, we show that the presence of high-frequency bursts synchronized across neighboring retinal ganglion cells correlates with robust eye-specific segregation and that the presence of high levels of asynchronous spikes does not inhibit this segregation. These findings provide a possible resolution to previously described discrepancies regarding the role of retinal waves in retinogeniculate segregation.