In vitro and in vivo relevance of infectious laryngotracheitis virus gJ proteins that are expressed from spliced and nonspliced mRNAs

J Virol. 2005 Jan;79(2):705-16. doi: 10.1128/JVI.79.2.705-716.2005.

Abstract

The positional homologue in the infectious laryngotracheitis virus (ILTV) genome of the glycoprotein gJ gene of herpes simplex virus and the gp2 gene of equine herpesvirus 1 is expressed into four proteins of 85, 115, 160, and 200 kDa (J. Veits, B. Kollner, J. P. Teifke, H. Granzow, T. C. Mettenleiter, and W. Fuchs, Avian Dis. 47:330-342, 2003). RNA analyses revealed that these proteins are expressed from two different late (gamma2) transcripts, an unspliced 5.5-kb and a spliced 4.3-kb mRNA that are translated into proteins of 985 and 611 amino acids, respectively. ILTV gJ is incorporated into virions and is modified by N- and O-linked glycosylation. After cotransfection of chicken cells with genomic DNA of a pathogenic ILTV strain and transfer plasmids, gJ-negative ILTV mutants could be isolated. In vitro growth studies demonstrated that deletion of the gJ gene has only minor effects on direct cell-to-cell spread as measured by plaque size. However, progeny virus titers of ILTV-DeltagJ were significantly reduced in comparison to those of the parental virus and a gJ rescue mutant. After experimental infection of chickens the gJ rescue mutant, like wild-type ILTV, caused severe disease and considerable mortality, whereas ILTV-DeltagJ was significantly attenuated. All immunized animals were protected against subsequent challenge infection with virulent ILTV. In sera collected after immunization with the gJ-rescue mutant or with wild-type ILTV, gJ-specific antibodies were detectable by immunofluorescence on cells that had been transfected with a gJ expression plasmid. As expected, no gJ-specific antibodies were found in sera obtained from chickens immunized with ILTV-DeltagJ. Thus, gJ deletion mutants of ILTV might be usable as attenuated live-virus vaccines. Furthermore, the gJ gene might constitute a reliable marker for serological discrimination between vaccinated and field virus-infected chickens.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chickens
  • Glycosylation
  • Iltovirus / chemistry*
  • RNA Splicing
  • Transcription, Genetic
  • Viral Proteins / chemistry
  • Viral Proteins / genetics
  • Viral Proteins / physiology*
  • Virulence

Substances

  • Viral Proteins