Complement and complement receptors have been known for several decades to play important roles in immune effector mechanisms related to pathogen elimination and tissue inflammation. In addition, studies over the last 10 years have clearly demonstrated a key role for the complement C3d activation fragment receptor designated CR2 (complement receptor type 2) in the switched-isotype, high-affinity and memory humoral immune responses to T-dependent foreign antigens. More recent studies have extended those observations to include a key role for CR2 and C3d in the humoral immune response to T-independent foreign antigens. Conversely, as these studies have proceeded, a parallel series of analyses have linked defects in expression or function of complement C4 and other classical pathway activation pathway proteins, as well as CR2 and the closely related CR1, to the loss of self tolerance to nuclear antigens such as double-stranded DNA and chromatin in systemic lupus erythematosus. With regard to the topic of this issue, it is now becoming increasingly clear that CR2 also plays a major role in the development of the natural antibody repertoire. Specifically, in the absence of this receptor natural IgM and IgG develop in the naïve animal that demonstrate clearly altered recognition patterns for specific natural antibody targets. This repertoire change is important physiologically in at least one setting because these CR2-dependent natural antibodies are necessary for the recognition of ischemic self tissues. In addition, it is possible that certain of the phenotypes manifest by CR2-deficient mice may be strongly influenced not only by effects on later stages of B cell activation and maturation, as commonly thought, but also by alterations in the pre-existing pool of natural antibodies that are influenced by this receptor. This review will examine the evidence that has accumulated over the last few years supporting these hypotheses.