Cartilage and bone degradation, observed in human rheumatoid arthritis (RA), are caused by aberrant expression of proteinases, resulting in an imbalance of these degrading enzymes and their inhibitors. However, the role of the individual proteinases in the pathogenesis of degradation is not yet completely understood. Murine antigen-induced arthritis (AIA) is a well-established animal model of RA. We investigated the time profiles of expression of matrix metalloproteinase (MMP), cathepsins, tissue inhibitors of matrix metalloproteinases (TIMP) and cystatins in AIA. For primary screening, we revealed the expression profile with Affymetrix oligonucleotide chips. Real-time polymerase chain reaction (PCR) analyses were performed for the validation of array results, for tests of more RNA samples and for the completion of the time profile. For the analyses at the protein level, we used an MMP fluorescence activity assay and zymography. By a combination of oligonucleotide chips, real-time PCR and zymography, we showed differential expressions of several MMPs, cathepsins and proteinase inhibitors in the course of AIA. The strongest dysregulation was observed on days 1 and 3 in the acute phase. Proteoglycan loss analysed by safranin O staining was also strongest on days 1 and 3. Expression of most of the proteinases followed the expression of pro-inflammatory cytokines. TIMP-3 showed an expression profile similar to that of anti-inflammatory interleukin-4. The present study indicates that MMPs and cathepsins are important in AIA and contribute to the degradation of cartilage and bone.