We have identified a gene encoding a heterotrimeric G protein gamma subunit, gng-1, from the filamentous fungus Neurospora crassa. gng-1 possesses a gene structure similar to that of mammalian Ggamma genes, consisting of three exons and two introns, with introns present in both the open reading frame and 5'-untranslated region. The GNG-1 amino acid sequence displays high identity to predicted Ggamma subunits from other filamentous fungi, including Giberella zeae, Cryphonectria parasitica, Trichoderma harzianum, and Magnaporthe grisea. Deletion of gng-1 leads to developmental defects similar to those previously characterized for Deltagnb-1 (Gbeta) mutants. Deltagng-1, Deltagnb-1, and Deltagng-1 Deltagnb-1 strains conidiate inappropriately in submerged cultures and are female sterile, producing aberrant female reproductive structures. Similar to previous results obtained with Deltagnb-1 mutants, loss of gng-1 negatively influences levels of Galpha proteins (GNA-1, GNA-2, and GNA-3) in plasma membrane fractions isolated from various tissues of N. crassa and leads to a significant reduction in the amount of intracellular cyclic AMP. In addition, we show that GNB-1 is essential for maintenance of normal steady-state levels of GNG-1, suggesting a functional interaction between GNB-1 and GNG-1. Direct evidence for a physical association between GNB-1 and GNG-1 in vivo was provided by coimmunoprecipitation.