Resistance training has been shown to considerably increase strength and neural drive during maximal eccentric muscle contraction; however, less is known about the adaptive change induced by subsequent detraining. The purpose of the study was to examine the effect of dynamic resistance training followed by detraining on changes in maximal eccentric and concentric isokinetic muscle strength, as well as to examine the corresponding adaptations in muscle cross-sectional area (CSA) and EMG activity. Maximal concentric and eccentric isokinetic knee extensor moment of force was measured in 13 young sedentary males (age 23.5+/-3.2 years), before and after 3 months of heavy resistance training and again after 3 months of detraining. Following training, moment of force increased during slow eccentric (50%, P<0.001), fast eccentric (25%, P<0.01), slow concentric (19%, P<0.001) and fast concentric contraction (11%, P<0.05). Corresponding increases in EMG were observed during eccentric and slow concentric contraction. Significant correlations were observed between the training-induced changes in moment of force and EMG (R(2)=0.33-0.77). Muscle CSA (measured by MRI) increased by 10% (P<0.001). After 3 months of detraining maximal muscle strength and EMG remained preserved during eccentric contraction but not concentric contraction. The present findings suggest that heavy resistance training induces long-lasting strength gains and neural adaptations during maximal eccentric muscle contraction in previously untrained subjects.