Regulation of cardiac excitation-contraction coupling by sorcin, a novel modulator of ryanodine receptors

Biol Res. 2004;37(4):609-12. doi: 10.4067/s0716-97602004000400015.

Abstract

Activation of Ca2+ release channels/ryanodine receptors (RyR) by the inward Ca2+ current (I(Ca)) gives rise to Ca(2+)-induced Ca2+ release (CICR), the amplifying Ca2+ signaling mechanism that triggers contraction of the heart. CICR, in theory, is a high-gain, self-regenerating process, but an unidentified mechanism stabilizes it in vivo. Sorcin, a 21.6 kDa Ca(2+)-binding protein, binds to cardiac RyRs with high affinity and completely inhibits channel activity. Sorcin significantly inhibits both the spontaneous activity of RyRs in quiescent cells (visualized as Ca2+ sparks) and the I(Ca)-triggered activity of RyRs that gives rise to [Ca2+]i transients. Since sorcin decreases the amplitude of the [Ca2+]i transient without affecting the amplitude of I(Ca), the overall effect of sorcin is to reduce the "gain" of excitation-contraction coupling. Immunocytochemical staining shows that sorcin localizes to the dyadic space of ventricular cardiac myocytes. Ca2+ induces conformational changes and promotes translocation of sorcin between soluble and membranous compartments, but the [Ca2+] required for the latter process (ED50 = approximately 200 microM) appears to be reached only within the dyadic space. Thus, sorcin is a potent inhibitor of both spontaneous and I(Ca)-triggered RyR activity and may play a role in helping terminate the positive feedback loop of CICR.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Calcium / metabolism
  • Calcium Signaling / physiology
  • Calcium-Binding Proteins / physiology*
  • Immunohistochemistry
  • Myocardial Contraction / physiology*
  • Myocytes, Cardiac / metabolism*
  • Ryanodine Receptor Calcium Release Channel / metabolism*
  • Sarcoplasmic Reticulum / metabolism*

Substances

  • Calcium-Binding Proteins
  • Ryanodine Receptor Calcium Release Channel
  • Calcium