Recombinant adeno-associated virus (rAAV) expressing TFPI-2 inhibits invasion, angiogenesis and tumor growth in a human glioblastoma cell line

Int J Cancer. 2005 Jul 20;115(6):998-1005. doi: 10.1002/ijc.20965.

Abstract

Recombinant adeno-associated viruses (rAAV) have become the vector of choice for many gene therapy protocols. rAAVs have a number of attractive features including long-term transgene expression and the ability to transduce both dividing and non-dividing cells. We have shown previously the anti-cancer role of tissue factor pathway inhibitor-2 (TFPI-2), a matrix-associated serine protease inhibitor, in human glioblastomas. As a result of our present study, in which 0.8-kb fragment of human TFPI-2 was cloned into the adeno-associated viral vectors (rAAA-TFPI-2), rAAV-TFPI-2 infection of SNB19 cells significantly increased TFPI-2 as determined by Western blotting. As assessed by spheroid and Matrigel assays, infection of SNB19 cells with rAAV-TFPI-2 significantly reduced migration and invasion in a dose-dependent manner. Tumor spheroids infected with rAAV-TFPI-2 and co-cultured with fetal rat brain aggregates did not invade rat brain aggregates, whereas 90-95% of the mock and AAV-CMV infected cells invaded rat brain aggregates. In vitro angiogenesis studies (tumor cells co-cultured with endothelial cells or endothelial cells seeded on matrigel) showed reduction of capillary-like structure formation in rAAV-TFPI-2-treated cells as compared to parental and mock-transfected cells. In in vivo angiogenesis results demonstrated the formation of microvessels in SNB19 parental cells and this formation was inhibited when the SNB19 cells were infected with rAAV-TFPI-2. Further, we observed a large reduction of tumor growth in SNB19 cells treated with rAAV-TFPI-2 virus injected intracerebrally when compared to controls. Our study demonstrates that rAAV-TFPI-2-mediated gene therapy offers a novel tool for the treatment of brain tumors.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Movement
  • Cell Proliferation
  • Dependovirus / genetics*
  • Genetic Vectors
  • Glioblastoma
  • Glycoproteins / genetics
  • Glycoproteins / physiology*
  • Humans
  • Mice
  • Mice, Nude
  • Neoplasm Invasiveness
  • Neoplasm Transplantation
  • Neovascularization, Pathologic / genetics*
  • Tumor Cells, Cultured

Substances

  • Glycoproteins
  • tissue-factor-pathway inhibitor 2