The hypothalamo-pituitary-adrenal axis is a stress-adaptive neuroendocrine ensemble, in which adrenocorticotropin (ACTH) drives cortisol secretion (feedforward) and cortisol restrains ACTH outflow (feedback). Quantifying direction- and pathway-specific adjustments within this and other interlinked systems by noninvasive means remains difficult. The present study tests the hypothesis that forward and reverse cross-approximate entropy (X-ApEn), a lag-, scale-, and model-independent measure of two-signal synchrony, would allow quantifiable discrimination of feedforward (ACTH --> cortisol) and feedback (cortisol --> ACTH) control. To this end, forward X-ApEn was defined by employing serial ACTH concentrations as a template to appraise pair-wise synchrony with cortisol secretion rates and vice versa for reverse X-ApEn. Coupled hormone profiles included normal ACTH-normal cortisol, high ACTH-high cortisol, and high ACTH-low cortisol concentrations in 35 healthy subjects, 21 patients with tumoral ACTH secretion, and 9 volunteers given placebo and a steroidogenic inhibitor, respectively. We used forward and reverse X-ApEn analyses to identify marked and equivalent losses of feedforward and feedback linkages (both P < 0.001) in patients with tumoral ACTH secretion. An identical analytical strategy revealed that ACTH --> cortisol feedforward synchrony decreases (P < 0.001), whereas cortisol --> ACTH feedback synchrony increases (P < 0.001), in response to hypocortisolemia. The collective outcomes establish precedence for pathway-specific adaptations in a major neurohormonal system. Thus quantification of directionally defined joint synchrony of biologically coupled signals offers a noninvasive strategy to dissect feedforward- and feedback-selective adaptations in an interactive axis.