TRAIL is a key target in S-phase slowing-dependent apoptosis induced by interferon-beta in cervical carcinoma cells

Oncogene. 2005 Apr 7;24(15):2536-46. doi: 10.1038/sj.onc.1208403.

Abstract

Interferon (IFN)-beta induces S-phase slowing and apoptosis in human papilloma virus (HPV)-positive cervical carcinoma cell line ME-180. Here, we show that apoptosis is a consequence of the S-phase lengthening imposed by IFN-beta, demonstrating the functional correlation between S-phase alteration and apoptosis induction. In ME-180 cells, where p53 function is inhibited by HPV E6 oncoprotein, IFN-beta effects on cell cycle and apoptosis occur independently of p53. The apoptosis due to IFN-beta is mediated by the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a manner dependent on the S-phase deregulation. IFN-beta appears to increase TRAIL expression both directly at the mRNA level and indirectly by augmenting surface protein levels as a consequence of the induced S-phase cell accumulation. Moreover, the alteration of the S-phase due to IFN-beta promotes TRAIL-dependent apoptosis by potentiating cell sensitivity to TRAIL, possibly through induction of a proapoptotic NF-kappaB activity and TRAIL-R2 receptor expression. Interestingly, IFN-beta-induced TRAIL-dependent apoptotic events strongly differ in the requirement of caspase activity. These results show that IFN-beta may induce an apoptotic response by deregulating cell cycle. Understanding the linkage between these mechanisms appears to be of primary importance in the search for new IFN-based therapeutic strategies to circumvent cancer disease or improve clinical outcome.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Apoptosis / physiology
  • Apoptosis Regulatory Proteins
  • Carcinoma / pathology*
  • Carcinoma / virology
  • Caspases / pharmacology
  • Female
  • Gene Expression Profiling
  • Genes, p53
  • Humans
  • Interferon-beta / pharmacology*
  • Membrane Glycoproteins / pharmacology*
  • Oligonucleotide Array Sequence Analysis
  • Papillomaviridae / pathogenicity
  • RNA, Messenger / analysis
  • S Phase
  • TNF-Related Apoptosis-Inducing Ligand
  • Tumor Cells, Cultured
  • Tumor Necrosis Factor-alpha / pharmacology*
  • Uterine Cervical Neoplasms / pathology*
  • Uterine Cervical Neoplasms / virology

Substances

  • Antineoplastic Agents
  • Apoptosis Regulatory Proteins
  • Membrane Glycoproteins
  • RNA, Messenger
  • TNF-Related Apoptosis-Inducing Ligand
  • TNFSF10 protein, human
  • Tumor Necrosis Factor-alpha
  • Interferon-beta
  • Caspases