Subcellular localization of a sporulation membrane protein is achieved through a network of interactions along and across the septum

Mol Microbiol. 2005 Mar;55(6):1767-81. doi: 10.1111/j.1365-2958.2005.04501.x.

Abstract

During the process of spore formation in Bacillus subtilis many membrane proteins localize to the sporulation septum where they play key roles in morphogenesis and cell-cell signalling. However, the mechanism by which these proteins are anchored at this site is not understood. In this report we have defined the localization requirements for the mother-cell membrane protein SpoIVFA, which anchors a signalling complex in the septal membrane on the mother cell side. We have identified five proteins (SpoIID, SpoIIP, SpoIIM, BofA and SpoIIIAH) synthesized in the mother cell under the control of sigma(E) and one protein (SpoIIQ) synthesized in the forespore under the control of sigma(F) that are all required for the proper localization of SpoIVFA. Surprisingly, these proteins appear to have complementary and overlapping anchoring roles suggesting that SpoIVFA is localized in the septal membrane through a web of protein interactions. Furthermore, we demonstrate a direct biochemical interaction between the extracellular domains of two of the proteins required to anchor SpoIVFA: the forespore protein SpoIIQ and the mother-cell protein SpoIIIAH. This result supports the idea that the web of interactions that anchors SpoIVFA is itself held in the septal membrane through a zipper-like interaction across the sporulation septum. Importantly, our results suggest that a second mechanism independent of forespore proteins participates in anchoring SpoIVFA. Finally, we show that the dynamic localization of SpoIIQ in the forespore is impaired in the absence of SpoIVFA but not SpoIIIAH. Thus, a complex web of interactions among mother cell and forespore proteins is responsible for static and dynamic protein localization in both compartments of the sporangium. We envision that this proposed network is involved in anchoring other sporulation proteins in the septum and that protein networks with overlapping anchoring capacity is a feature of protein localization in all bacteria.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacillus subtilis / physiology*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Bacterial Proteins / physiology
  • Gene Deletion
  • Genes, Reporter
  • Green Fluorescent Proteins / genetics
  • Green Fluorescent Proteins / metabolism
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Membrane Proteins / physiology
  • Microscopy, Fluorescence
  • Protein Binding
  • Protein Interaction Mapping
  • Protein Structure, Tertiary
  • Protein Transport / genetics*
  • Protein Transport / physiology
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism*
  • Sequence Deletion
  • Spores, Bacterial / growth & development

Substances

  • Bacterial Proteins
  • Membrane Proteins
  • Recombinant Fusion Proteins
  • Repressor Proteins
  • spore-specific proteins, Bacillus
  • bofA protein, Bacillus subtilis
  • spoIVFA protein, Bacillus subtilis
  • Green Fluorescent Proteins