Objective: During biliary cirrhosis in rats, organic anion-transporting peptides (Oatps) and ATP-dependent multidrug resistance-associated protein 2 (Mrp2) that are likely to transport the contrast agent Gd-BOPTA through hepatocytes are down-regulated. However, the consequences of such down-regulation on the signal intensity (SI) enhancement are unknown. Consequently, the aim of our study was to measure the hepatic SI enhancement during Gd-BOPTA perfusion as well as the Oatp and Mrp2 expression in normal and cirrhotic livers.
Materials and methods: The hepatic SI enhancement during Gd-BOPTA perfusion was measured in livers isolated from normal rats and rats that had a bile duct ligation (BDL) 15, 30, and 60 days before the perfusion. Hepatic injury and transporter expression were measured in control and cirrhotic rats.
Results: BDL induced a severe hepatic injury that increased over time with a down-regulation of the transporter expression. The extracellular space (assessed by Gd-DTPA perfusion) increased with the severity of the disease. Gd-BOPTA-induced SI enhancement remained similar in BDL-15 and BDL-30 rats than in control rats but significantly decreased in severe cirrhosis (BDL-60 rats). In comparison, the Mn-DPDP-induced SI enhancement decreases proportionally to the severity of the disease.
Conclusion: During biliary cirrhosis, Gd-BOPTA-induced SI enhancement could not be related to the hepatic expression of transporters.