The aim of this work was to evaluate the influence of elevating the cytosolic activity of phosphoglucomutase (PGM; EC 5.4.2.2) on photosynthesis, growth and heterotrophic metabolism. Here we describe the generation of novel transgenic plants expressing an Escherichia coli phosphoglucomutase (EcPGM) under the control of the 35S promoter. These lines were characterised by an accumulation of leaf sucrose, despite displaying no alterations in photosynthetic carbon partitioning, and a reduced tuber starch content. Determinations of the levels of a wide range of other metabolites revealed dramatic reductions in maltose and other sugars in leaves of the transformants, as well as a modification of the pattern of organic and amino acid content in tubers of these lines. Intriguingly, the transgenics also displayed a dramatically delayed rate of sprouting and significantly enhanced rate of respiration, however, it is important to note that the severity of these traits did not always correlate with the level of transgene expression. These results are discussed in the context of current understanding of the control of respiration and the breaking of tuber dormancy.