Troglitazone is a potent agonist for the peroxisome proliferator-activated receptor-gamma (PPARgamma) that is a ligand-activated transcription factor regulating cell differentiation and growth. PPARgamma may play a role in thyroid carcinogenesis since PAX8-PPARgamma1 chromosomal translocations are commonly found in follicular thyroid cancers. We investigated the antiproliferative and redifferentiation effects of troglitazone in 6 human thyroid cancer cell lines: TPC-1 (papillary), FTC-133, FTC-236, FTC-238 (follicular), XTC-1 (Hürthle cell), and ARO82-1 (anaplastic) cell lines. PPARgamma was expressed variably in these cell lines. FTC-236 and FTC-238 had a rearranged chromosome at 3p25, possibly implicating the involvement of the PPARgamma encoding gene whereas the other cell lines did not. Troglitazone significantly inhibited cell growth by cell cycle arrest and apoptotic cell death. PPARgamma overexpression did not appear to be a prerequisite for a response to treatment with troglitazone. Troglitazone also downregulated surface expression of CD97, a novel dedifferentiation marker, in FTC-133 cells and upregulated sodium iodide symporter (NIS) mRNA in TPC-1 and FTC-133 cells. Our investigations document that human thyroid cancer cell lines commonly express PPARgamma, but chromosomal translocations involving PPARgamma are uncommon. Troglitazone, a PPARgamma agonist, induced antiproliferation and redifferentiation in thyroid cancer cell lines. PPARgamma agonists may therefore be effective therapeutic agents for the treatment of patients with thyroid cancer that fails to respond to traditional treatments.