A comparison of egocentric and allocentric age-dependent spatial learning in the beagle dog

Prog Neuropsychopharmacol Biol Psychiatry. 2005 Mar;29(3):361-9. doi: 10.1016/j.pnpbp.2004.12.002.

Abstract

Spatial discriminations can be performed using either egocentric information based on body position or allocentric information based on the position of landmarks in the environment. Beagle dogs ranging from 2 to 16 years of age were tested for their ability to learn a novel egocentric spatial discrimination task that used two identical blocks paired in three possible spatial positions (i.e. left, center and right). Dogs were rewarded for responding to an object furthest to either their left or right side. Therefore, when the center location was used, it was correct on half of the trials and incorrect on the other half. Upon successful acquisition of the task, the reward contingencies were reversed, and the dogs were rewarded for responding to the opposite side. A subset of dogs was also tested on an allocentric spatial discrimination task, landmark discrimination. Egocentric spatial reversal learning and allocentric discrimination learning both showed a significant age-dependent decline, while initial egocentric learning appeared to be age-insensitive. Intra-subject correlation analyses revealed a significant relationship between egocentric reversal learning and allocentric learning. However, the correlation only accounted for a small proportion of the variance, suggesting that although there might be some common mechanism underlying acquisition of the two tasks, additional unique neural substrates were involved depending on whether allocentric or egocentric spatial information processing was required.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aging / physiology*
  • Analysis of Variance
  • Animals
  • Behavior, Animal
  • Discrimination Learning / physiology*
  • Dogs
  • Mental Recall / physiology*
  • Orientation / physiology*
  • Reaction Time / physiology
  • Regression Analysis
  • Spatial Behavior / physiology*