Gnas is a complex gene with multiple imprinted promoters. The upstream Nesp and Nespas/Gnasxl promoters are paternally and maternally methylated, respectively. The downstream promoter for the stimulatory G protein alpha-subunit (G(s)alpha) is unmethylated, although in some tissues (e.g., renal proximal tubules), G(s)alpha is poorly expressed from the paternal allele. Just upstream of the G(s)alpha promoter is a primary imprint mark (1A region) where maternal-specific methylation is established during oogenesis. Pseudohypoparathyroidism type 1B, a disorder of renal parathyroid hormone resistance, is associated with loss of 1A methylation. Analysis of embryos of Dnmt3L(-/-) mothers (which cannot methylate maternal imprint marks) showed that Nesp, Nespas/Gnasxl, and 1A imprinting depend on one or more maternal primary imprint marks. We generated mice with deletion of the 1A differentially methylated region. These mice had normal Nesp-Nespas/Gnasxl imprinting, indicating that the Gnas locus contains two independent imprinting domains (Nespas-Nespas/Gnasxl and 1A-G(s)alpha) controlled by distinct maternal primary imprint marks. Paternal, but not maternal, 1A deletion resulted in G(s)alpha overexpression in proximal tubules and evidence for increased parathyroid hormone sensitivity but had no effect on G(s)alpha expression in other tissues where G(s)alpha is normally not imprinted. The 1A region is a maternal imprint mark that contains one or more methylation-sensitive cis-acting elements that suppress G(s)alpha expression from the paternal allele in a tissue-specific manner.