The ability to modify plant traits is of great commercial potential in agricultural biotechnology. To this end we have engineered plant-based zinc finger protein transcription factors (ZFP TFs) that minimize the use of non-plant DNA sequences. This novel architecture supports the use of tandem arrays of zinc-finger DNA recognition domains such that the ZFP TF binds a contiguous DNA target site - thus emulating the design of ZFP TFs described previously for mammalian gene regulation. We show that this plant-based ZFP TF architecture supports high affinity DNA binding while allowing the specificity of the DNA-protein interaction to be determined by the amino acid sequences of the recognition helices. This plant-based backbone thus supports the use of previously characterized DNA recognition helices originally identified in a mammalian ZFP context without using mammalian DNA sequences. Moreover, we show that plant-based ZFP TFs employing this new architecture can up-regulate endogenous ADH activity by > 20-fold in transgenic Arabidopsis. Thus plant-based ZFP TFs are shown to be potent regulators of gene expression in vivo.