The pattern of mutational covariance among traits plays a central, but largely untested, role in many theories in evolutionary genetics. Here we estimate the pattern of phenotypic, environmental, and mutational correlations for a set of life-history, behavioral, and morphological traits using 67 self-fertilizing lines of Caenorhabditis elegans, each having independently experienced an average of 370 generations of spontaneous mutation accumulation. Bivariate relationships of mutational effects indicate the existence of extensive pleiotropy. We find that mutations may tend to produce manifold effects on suites of functionally related traits; however, our data do not support the idea of completely parcelated pleiotropy, in which functional units are separately affected by mutations. Positive net phenotypic and mutational correlations are common for life-history traits, with environmental correlations being comparatively smaller and of the same sign for most pairs of traits. Observed mutational correlations are shown to be higher than those produced by the chance accumulation of nonpleiotropic mutations in the same lines.