High-level electronic structure calculations have been used to study the factors contributing to the barriers to degenerate hydrogen-atom transfer (HAT) reactions. Understanding of these reactions is a prerequisite to the development of any more general theory of HAT reactions, and yet, the existing models for such reactions perform quite poorly when applied to even simple self-exchanges. The reasons behind these failures are elucidated in the present work. They include a near cancellation of bond-strength effects between reactant and transition state, as well as a strong dependence of the geometry of the transition state on the nature of the heavy atoms.