Although previous studies have shown that altered B7 costimulation plays a critical role in UV irradiation-induced regulation of immunity, the individual roles of the B7 receptors (CD28 and CTLA-4) or the B7 family members (CD80 and CD86) have not been explored. Thus, we investigated CTLA-4 signaling during photocarcinogenesis of chronically UV-B-exposed mice using an antagonistic anti-CTLA-4 Ab. Anti-CTLA-4-treated mice developed significantly fewer UV-induced tumors. Moreover, anti-CTLA-4 treatment induced long-lasting protective immunity because progressively growing UV tumors inoculated into anti-CTLA-4- and UV-treated mice that had not developed tumors were rejected. Next, we used mice deficient for CD80, CD86, or both in photocarcinogenesis studies to assess the relative contributions of these CTLA-4 ligands. Double-deficient mice showed significantly reduced UV-induced skin tumor development, whereas CD86(-/-) mice produced skin cancer earlier compared with CD80(-/-) and control mice. The growth of UV-induced tumors appears to be controlled by UV-induced suppressor T cells, because CD80(-/-)/CD86(-/-) mice had strongly reduced numbers of UV-induced CD4(+)CD25(+) suppressor T cells. In vitro, CTLA-4 blockade inhibited the suppressor activity of UV-induced CD4(+)CD25(+) T cells, suggesting that reduced photocarcinogenesis might be due to decreased numbers or function of suppressor T cells. Together, these data indicate that blocking CD80/86-CTLA-4 signaling induced immune protection against the development of UV-induced skin tumors. Furthermore, CD86-mediated costimulation appears to play a more critical role in the protection against photocarcinogenesis than CD80.