The genes for the alpha and beta chains of a highly reactive anti-MART-1 T-cell receptor were isolated from T-lymphocytes that mediated in vivo regression of tumor in a patient with metastatic melanoma. These genes were cloned and inserted into MSCV-based retroviral vectors. After transduction, greater than 50% gene transfer efficiency was demonstrated in primary T-lymphocytes stimulated by an anti-CD3 antibody. The specificity and biologic activity of TCR gene-transduced T-cells was determined by cytokine production after coculture of T-cells with stimulator cells pulsed with MART-1 peptide. The production of interferon-gamma and granulocyte macrophage-colony stimulating factor (GM-CSF) was comparable to highly active MART-1 specific peripheral blood lymphocytes (PBL) in the amount of cytokine produced and transduced cells recognized peptide pulsed cells at dilutions similar to cytotoxic T lymphocyte (CTL) clones. Human leukocyte antigen (HLA) class I restricted recognition was demonstrated by mobilization of degranulation marker CD107a, by cell lysis, by cytokine production, and by proliferation in the presence of HLA-A2-positive but not HLA-A2-negative melanoma cell lines. Similar data was obtained when tumor-infiltrating lymphocytes (TIL) were transduced with the TCR genes, converting previously nonreactive cells to tumor reactive cells. TCR-transduced T-cells are thus attractive candidates for evaluation in cell transfer therapies of patients with cancer.