A comparative metabolism study was performed for bufuralol, dextromethorphan, imipramine, mianserin, sparteine, tamoxifen, haloperidol and two drug candidates (Rec27/0110 and Rec15/2739) on V79 cells genetically engineered to express human cytochrome P450 (CYP) variants 2D6*1, 2D*2, 2D*9 and 2D*17. Unexpectedly, the CYP2D6*17 dependent metabolism profile of haloperidol and Rec27/0110 were found to differ from all other substrates tested. Some of these known standard substrates are frequently applied in marker reactions for CYP2D6 and with these standard substrates, CYP2D6*1 is known to be the most active form. In both cases of haloperidol and Rec27/0110 the variant form CYP2D6*17 had equal or higher activity compared to the CYP2D6*1 form. Results obtained with the V79 cells were confirmed using microsomal preparation of yeast cells expressing the variants CYP2D6*1 and CYP2D6*17 and CYP2D6 inhibitor quinidine. In conclusion, there is no general rule for a variant dependent metabolism profile by cytochrome P450 2D6 indicating that the activity profile of the CYP2D6 alleles may be substrate specific, thus may be reflected in pharmacokinetics consequences for individuals.