1,25-Dihydroxyvitamin D3 [1,25(OH)2D3], the active metabolite of vitamin D3, inhibits the proliferation of prostate cancer cells. However, the molecular mechanisms by which 1,25(OH)2D3 inhibits the proliferation of these cells remain to be fully elucidated. In this study, we used microarray technology to identify target genes of 1,25(OH)2D3 in androgen-responsive prostate cancer LNCaP cells. 1,25(OH)2D3 up-regulated CCAAT/enhancer-binding protein delta (C/EBPdelta) by approximately 5-fold in these cells. Knockdown of C/EBPdelta expression by RNA interference showed that C/EBPdelta is essential for the significant growth inhibition of LNCaP cells in response to 1,25(OH)2D3 treatment. Moreover, we found that 1,25(OH)2D3 induced C/EBPdelta in other cancer cells, including the estrogen receptor (ER)-expressing MCF-7 and T47D breast cancer cells that are sensitive to the growth inhibitory effects of 1,25(OH)2D3. On the other hand, 1,25(OH)2D3 was not able to induce C/EBPdelta in either androgen receptor-negative PC-3 and DU145 or ER-negative breast cancer MDA-MB-231 cells that were relatively resistant to growth inhibition by 1,25(OH)2D3. Furthermore, forced expression of C/EBPdelta in prostate cancer LNCaP as well as breast cancer MCF-7 and T47D cells dramatically reduced their clonal growth. Taken together, forced expression of C/EBPdelta in cancer cells may be a promising therapeutic strategy.