The symmetrically dinuclear title compounds were isolated as diamagnetic [(bpy)2Ru(mu-H2L)Ru(bpy)2](ClO4)2 (1-(ClO4)2) and as paramagnetic [(acac)2Ru(mu-H2L)Ru(acac)2] (2) complexes (bpy=2,2'-bipyridine; acac- = acetylacetonate = 2,4-pentanedionato; H2L = 2,5-dioxido-1,4-benzoquinonediimine). The crystal structure of 22 H2O reveals an intricate hydrogen-bonding network: Two symmetry-related molecules 2 are closely connected through two NH(H2L2-)O(acac-) interactions, while the oxygen atoms of H2L2- of two such pairs are bridged by an (H2O)8 cluster at half-occupancy. The cluster consists of cyclic (H2O)6 arrangements with the remaining two exo-H2O molecules connecting two opposite sides of the cyclo-(H2O)6 cluster, and oxido oxygen atoms forming hydrogen bonds with the molecules of 2. Weak antiferromagnetic coupling of the two ruthenium(III) centers in 2 was established by using SQUID magnetometry and EPR spectroscopy. Geometry optimization by means of DFT calculations was carried out for 1(2+) and 2 in their singlet and triplet ground states, respectively. The nature of low-energy electronic transitions was explored by using time-dependent DFT methods. Five redox states were reversibly accessible for each of the complexes; all odd-electron intermediates exhibit comproportionation constants K(c)>10(8). UV-visible-NIR spectroelectrochemistry and EPR spectroscopy of the electrogenerated paramagnetic intermediates were used to ascertain the oxidation-state distribution. In general, the complexes 1n+ prefer the ruthenium(II) configuration with electron transfer occurring largely at the bridging ligand (mu-H2Ln-), as evident from radical-type EPR spectra for 13+ and (+. Higher metal oxidation states (iii, iv) appear to be favored by the complexes 2m; intense long-wavelength absorption bands and RuIII-type EPR signals suggest mixed-valent dimetal configurations of the paramagnetic intermediates 2+ and 2-.